

Kaycha Labs

Matrix: Derivative

Certificate of Analysis

Sample: KN20923009-002 Harvest/Lot ID: 020122

Batch#: 020122

Seed to Sale# N/A Batch Date: N/A

Sample Size Received: 60 ml

Total Batch Size: N/A Retail Product Size: 60 ml

Ordered: 09/07/22 Sampled: 09/07/22

Completed: 09/29/22 Sampling Method: N/A

Sep 29, 2022 | cbd dog health

163 Carts Lake Lane Lutz, FL, 33548, US

SAFETY RESULTS

Pesticides

Heavy Metals

Residuals Solvents

PASSED

Water Activity

PASSED

Cannabinoid

Total THC

0.0405% Total THC/Bottle : 23.328 mg

Total CBD 1.0913%

Total Cannabinoids

									-			_				
	CBDV	CBDA	CBGA	CBG	CBD	THCV	CBN	EXO-THC	D9-THC	D8-THC	D10-THC	CBC	THCA	D8-THCO	D9-THCO	THC-0
%	< 0.01	< 0.01	0.01	0.0886	1.0913	0.1155	< 0.01	ND	0.0405	ND	ND	0.0403	ND	ND	ND	ND
mg/m1	< 0.096	< 0.096	0.096	0.8505	10.4764	1.1088	< 0.096	ND	0.3888	ND	ND	0.3868	ND	ND	ND	ND
LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
	9/0	9/0	0/0	0/0	0/0	9/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	9/0

8. Extraction date: 09/23/22 13:36:39 Extracted by: 09/23/22 13:36:39

Analysis Method: Expanded Measurement of Uncertainty: Flower Matrix d9-THC:12.7%, THCa: 9.5%, TOTAL THC 11. 1%. These uncertainties represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor k=2 for a normal distribution.

Analytical Batch: KIN002940POT

Instrument Uged: HPLC E-SH-008

Running on: RI/A

Reviewed on: 09/27/22 12:53:32

Batch Date: 09/23/22 13:33:40

Dilution: N/A

Dilution: N/A Reagent: 062422.02; 011320.02; 070822.R01; 063022.R02 Consumables: 294033242; 270314; 201123-058; 94789291.100; 0030220 Pipette: E-GiL-010; E-EPP-081

aphy with UV/PDA detection (HPLC-UV/PDA). (Method: SOP.T.30.031.TN for sample prep and Shimadzu High Sensitivity Method SOP.T.40.020 for analysis.). "Based on FL action limits

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. (C=in-cantrol CQ parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LioD) and Limit Of Quantitation (LioQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

State License # n/a

09/29/22

Kaycha Labs

EASE Tincture N/A Matrix : Derivative

Certificate of Analysis

PASSED

cbd dog health

163 Carts Lake Lane Lutz, FL, 33548, US Telephone: (786) 314-9092 Email: joe@cbddoghealth.com Sample : KN20923009-002 Harvest/Lot ID: 020122

Batch#:020122 Sampled:09/07/22 Ordered:09/07/22

Sample Size Received: 60 ml Total Batch Size: N/A Completed: 09/29/22 Expires: 09/29/23 Sample Method: SOP Client Method

Page 2 of 6

Terpenes

TESTED

Terpenes	LOD (%)	mg/ml	%	Result (%)	Terpenes		LOD (%)	mg/ml	%	Result (%)
SABINENE HYDRATE		ND	ND		3-CARENE		0.007	0.3148	0.0328	
SERANIOL		ND	ND		FENCHYL ALCOHOL		0.007	ND	ND	
SERANYL ACETATE		ND	ND		HEXAHYDROTHYMOL		0.007	ND	ND	
GUAIOL		ND	ND		EUCALYPTOL		0.007	< 0.192	< 0.02	
LIMONENE		0.3667	0.0382		ISOBORNEOL		0.007	ND	ND	
INALOOL		ND	ND		FARNESENE		0.007	< 0.192	<0.02	
NEROL		ND	ND		FENCHONE		0.007	ND	ND	
CIMENE		ND	ND		Analyzed by:	Weight:			on date:	Extracted by:
ALPHA-PHELLANDRENE		0.5462	0.0569		2368, 138, 12	lo lo		N/A	on date:	N/A
PULEGONE	0.007	ND	ND		Analysis Method : SOP.T.40.090					
ABINENE			0.0502		Analytical Batch : KN002933TER					On; 09/27/22 17:19:42
SAMMA-TERPINENE		ND.	ND		Instrument Used: E-SHI-109 Terpenes Running on: N/A	5		8	latch Date	: 09/23/22 08:52:34
ERPINEOL	0.007	ND	ND		The state of the s					
ERPINOLENE	0.007	ND	ND		Dilution: N/A Reagent: N/A					
RANS-CARYOPHYLLENE	0.007	ND	ND		Consumables : N/A					
RANS-NEROLIDOL	0.007	ND	ND		Pipette : N/A					
ALENCENE	0.007	ND	ND		Terpenoid profile screening is performed u 38 terpenes using Method SOP.T.40,090 Te	ising GC-MS	with Liq	uid injection	(Gas Chro	matography - Mass Spectrometer) which
A description of a declarate of the second of the	0.007		< 0.02		an to be not a string tries has a service and the					Committee of the Commit
LPHA-BISABOLOL			<0.02		of Ulasia and Haller and Haller					3000
LPHA-BISABOLOL	0.007 0.007	<0.192								XXXX
LEPHA-BISABOLOL LEPHA-HUMULENE LEPHA-PINENE	0.007 0.007 0.007	<0.192 <0.192	< 0.02							
ILPHA-BISABOLOL ILPHA-HUMULENE ILPHA-PINENE ILPHA-TERPINENE	0.007 0.007 0.007 0.007	<0.192 <0.192 0.5664	<0.02 0.059							
LLPHA-BISABOLOL LLPHA-HUMULENE LLPHA-PINENE LLPHA-TERPINENE LETA-MYRCENE	0.007 0.007 0.007 0.007 0.007	<0.192 <0.192 0.5664 ND	<0.02 0.059 ND							
ALPHA-BISABOLOL ALPHA-HUMULENE ALPHA-PINENE ALPHA-TERPINENE BETA-MYRCENE BETA-PINENE	0.007 0.007 0.007 0.007 0.007	<0.192 <0.192 0.5664 ND ND	<0.02 0.059 ND ND							
ALPHA-BISABOLOL ALPHA-HUMULENE ALPHA-PINENE ALPHA-TERPINENE BETA-MYRCENE BETA-PINENE BORNEOL	0.007 0.007 0.007 0.007 0.007 0.007 0.007	<0.192 <0.192 0.5664 ND ND ND	<0.02 0.059 ND ND ND							
ALPHA-BISABOLOL ALPHA-HUMULENE ALPHA-TERPINENE ALPHA-TERPINENE BETA-MYRCENE BETA-PINENE BORNEOL CAMPHENE	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.013	<0.192 <0.192 0.5664 ND ND ND ND	<0.02 0.059 ND ND ND ND							
LPHA-BISABOLOL LPHA-HUMULENE LLPHA-PINENE LLPHA-TENPINENE ETA-MYRCENE ETA-MYRCENE ETA-PINENE ORNEOL AMPHENE AMPHOR	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.013 0.007 0.013	<0.192 <0.192 0.5664 ND ND ND ND ND	<0.02 0.059 ND ND ND ND ND							
ALPHA-BISABOLOL LAPHA-HUMULENE LAPHA-THENE LAPHA-TERPINENE BETA-MYRCENE BETA-PINENE BORNEOL CAMPHENE CAMPHOR CARPOPHYLLENE OXIDE	0.007 0.007 0.007 0.007 0.007 0.007 0.013 0.007 0.013	<0.192 <0.192 0.5664 ND ND ND ND ND ND ND	<0.02 0.059 ND ND ND ND ND ND							
ALPHA-BISABOLOL ALPHA-HUMULENE ALPHA-TERPINENE BETA-MYRCENE BETA-PINENE BORNEOL CAMPHENE CAMPHOR CARYOPPYLLENE OXIDE	0.007 0.007 0.007 0.007 0.007 0.007 0.013 0.007 0.013 0.007	<0.192 <0.192 0.5664 ND ND ND ND ND ND ND ND	<0.02 0.059 ND ND ND ND ND ND ND							
ALPHA-BISABOLOL ALPHA-HUMULENE ALPHA-HUMULENE ALPHA-FINENE BETA-WYACENE BETA-WYACENE BETA-WHORE BORNEOL CAMPHENE CAMPHOR CARPOHYALENE OXIDE CEROOL ALPHA-CEODENE SOPULEOOL	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.013 0.007 0.013 0.007 0.007	<0.192 <0.192 0.5664 ND ND ND ND ND ND ND ND ND	<0.02 0.059 ND ND ND ND ND ND ND ND							

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC—In-control QC parameter, NC—Non-controlled QC parameter, ND—Not Detected, NA—Not Analyzed, ppm=Parts Per Millon, pbp=Parts Per Millon, pbillon. Limit of Detection (LGD) and Limit Of Quantitation (LGQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017 Suligisa

Signature

09/29/22

Kaycha Labs

Matrix : Derivative

PASSED

Certificate of Analysis

163 Carts Lake Lane Lutz, FL, 33548, US Telephone: (786) 314-9092 Email: joe@cbddoghealth.com Harvest/Lot ID: 020122

Batch#:020172 Sampled: 09/07/22 Ordered: 09/07/22

Sample Size Received: 60 ml

Total Batch Size : N/A Completed: 09/29/22 Expires: 09/29/23 Sample Method: SOP Client Method

Page 3 of 6

Pesticides

	PA	5	5	ED	4
					4

Pesticide	LOD	Units	Action Level	Pass/Fail	Resu
ABAMECTIN B1A	0.01	ppm	0.3	PASS	ND
ACEPHATE	0.01	ppm	3	PASS	ND
ACEQUINOCYL	0.01	ppm	2	PASS	ND
ACETAMIPRID	0.01	ppm	3	PASS	ND
ALDICARB	0.01	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.01	ppm	3	PASS	ND
BIFENAZATE	0.01	ppm	3	PASS	ND
BIFENTHRIN	0.01	ppm	0.5	PASS	ND
BOSCALID	0.01	ppm	3	PASS	ND
CARBARYL	0.01	ppm	0.5	PASS	ND
CARBOFURAN	0.01	ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.01	ppm	3	PASS	ND
CHLORMEQUAT CHLORIDE	0.01	ppm	3	PASS	ND
CHLORPYRIFOS	0.01	ppm	0.1	PASS	ND
CLOFENTEZINE	0.01	ppm	0.5	PASS	ND
COUMAPHOS	0.01	ppm	0.1	PASS	ND
CYPERMETHRIN	0.01	ppm	1	PASS	ND
DAMINOZIDE	0.01	ppm	0.1	PASS	ND
DIAZANON	0.01	ppm	0.2	PASS	ND
DICHLORVOS	0.01	ppm	0.1	PASS	ND
DIMETHOATE	0.01	ppm	0.1	PASS	ND
DIMETHOMORPH	0.01	ppm	3	PASS	ND
ETHOPROPHOS	0.01	ppm	0.1	PASS	ND
ETOFENPROX	0.01	ppm	0.1	PASS	ND
ETOXAZOLE	0.01	ppm	1.5	PASS	ND
FENHEXAMID	0.01	ppm	3	PASS	ND
FENOXYCARB	0.01	ppm	0.1	PASS	ND
FENPYROXIMATE	0.01	ppm	2	PASS	ND
FIPRONIL	0.01	ppm	0.1	PASS	ND
FLONICAMID	0.01	ppm	2	PASS	ND
FLUDIOXONIL	0.01	ppm	3	PASS	ND
HEXYTHIAZOX	0.01	ppm	2	PASS	ND
IMAZALII	0.01	ppm	0.1	PASS	ND
IMIDACLOPRID	0.01	ppm	3	PASS	ND
KRESOXIM-METHYL	0.01	ppm	1	PASS	ND
MALATHION	0.01	mag	2	PASS	ND
METALAXYL	0.01	ppm	3	PASS	ND
METHIOCARB	0.01	ppm	0.1	PASS	ND
METHOMYL	0.01	ppm	0.1	PASS	ND
MEVINPHOS	0.01	mag	0.1	PASS	ND
MYCLOBUTANIL	0.01		3	PASS	ND
NALED	0.01	ppm	0.5	PASS	ND
OXAMYL	0.01	ppm	0.5	PASS	ND
PACLOBUTRAZOL	0.01	ppm	0.1	PASS	ND
PERMETHRINS	0.01	ppm	1	PASS	ND
PHOSMET	0.01	ppm	0.2	PASS	ND
PROSMET	0.01	BRILL	0.2	1700	140

Pesticide		LOD	Units	Action Level	Pass/Fail	Result
PIPERONYL BUTOXIDE		0.01	ppm	.3	PASS	ND
PRALLETHRIN		0.01	ppm	0.4	PASS	ND
PROPICONAZOLE		0.01	ppm	1	PASS	ND
PROPOXUR		0.01	ppm	0.1	PASS	ND
PYRETHRINS		0.01	ppm	1	PASS	ND
PYRIDABEN		0.01	ppm	3	PASS	ND
SPINETORAM		0.01	ppm	3	PASS	ND
SPIROMESIFEN		0.01	ppm	3	PASS	ND
SPIROTETRAMAT		0.01	ppm	3	PASS	ND
SPIROXAMINE		0.01	ppm	0.1	PASS	ND
TEBUCONAZOLE		0.01	ppm	1	PASS	ND
THIACLOPRID		0.01	ppm	0.1	PASS	ND
THIAMETHOXAM		0.01	ppm	1	PASS	ND
TOTAL SPINOSAD		0.01	ppm	3	PASS	ND
TRIFLOXYSTROBIN		0.01	ppm	3	PASS	ND
Analyzed by: 2803, 2368	Weight: 0.5055g	Extra N/A	action dat	e:	Extracted I	by:
Analysis Method : SOP.T.	30.060, SOP.T.40.0	060				

Analytical Batch: KN002947PES Instrument Used: E-SHL125 Pesticides Running on: N/A Reviewed On: 09/27/22 15:25:05 Batch Date: 09/26/22 14:44:05

Dilution: 0.01 Reagent: N/A Consumables: N/A

Pesticide analysis is performed using LC-MSMS which can quantify down to below single digit ppb concentrations for regulated Pesticides, Currently we analyze for 61 Pesticides, (Methods: SOP.T. 30.065 Sample Preparation for Pesticides Analysis via LCMSMS and SOP.T40.065 Procedure for Pesticide Quantification Using LCMSMS). "Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC—In-control QC parameter, NC—Non-controlled QC parameter, ND—Not Detected, NA—Not Analyzed, ppm=Parts Per Millon, pbp=Parts Per Millon, pbillon. Limit of Detection (LGD) and Limit Of Quantitation (LGQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

State License # n/a

Signature

09/29/22

Kaycha Labs

Matrix : Derivative

PASSED

Certificate of Analysis

163 Carts Lake Lane Lutz, FL, 33548, US Telephone: (786) 314-9092 Email: joe@cbddoghealth.com Harvest/Lot ID: 020122

Batch#:020172 Sampled: 09/07/22 Ordered: 09/07/22

Sample Size Received: 60 ml Total Batch Size : N/A Completed: 09/29/22 Expires: 09/29/23 Sample Method: SOP Client Method

Page 4 of 6

9	"	š
)	[
7	_	7

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result
PROPANE	500	ppm	2100	PASS	ND
BUTANES (N-BUTANE)	500	ppm	2000	PASS	ND
METHANOL	25	ppm	3000	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
PENTANES (N-PENTANE)	75	ppm	5000	PASS	ND
ETHANOL	500	ppm	5000	PASS	ND
ETHYL ETHER	50	ppm	5000	PASS	ND
1.1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
ACETONE	75	ppm	5000	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONITRILE	6	ppm	410	PASS	ND
DICHLOROMETHANE	12.5	ppm	600	PASS	ND
N-HEXANE	25	ppm	290	PASS	ND
ETHYL ACETATE	40	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	60	PASS	ND
BENZENE	0.1	ppm	2	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	5	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	80	PASS	ND
TOLUENE	15	ppm	890	PASS	ND
TOTAL XYLENES - M, P & O - DIMETHYLBENZENE	15	ppm	2170	PASS	ND

Weight: Analyzed by: Extraction date: Extracted by:

Analysis Method: SOP.T.40.032 Analytical Batch: KN002944501

Instrument Used: E-SHI-106 Residual Solvents Running on: N/A

Dilution : N/A Reagent: N/A Consumables : N/A Pipette: N/A

Residual solvents analysis is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 22 residual solvents. (Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS). *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC—In-control QC parameter, NC—Non-controlled QC parameter, ND—Not Detected, NA—Not Analyzed, ppm=Parts Per Millon, pbp=Parts Per Millon, pbillon. Limit of Detection (LGD) and Limit Of Quantitation (LGQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Reviewed On: 09/29/22 19:17:50

Batch Date: 09/26/22 10:06:58

State License # n/a

Signature

09/29/22

Kaycha Labs

Matrix : Derivative

Certificate of Analysis

PASSED

163 Carts Lake Lane Lutz, FL, 33548, US Telephone: (786) 314-9092 Email: joe@cbddoghealth.com Harvest/Lot ID: 020122

Batch#:020172 Sampled: 09/07/22 Ordered: 09/07/22

Sample Size Received: 60 ml

Total Batch Size : N/A Completed: 09/29/22 Expires: 09/29/23 Sample Method: SOP Client Method

Page 5 of 6

Microbial

Mycotoxins

PASSED

Analyte	LOD	Units	Result	Pass / Fail	Action Level
ESCHERICHIA COLI SHIGELLA SPP			Not Present	PASS	
SALMONELLA SPECIFIC GENE			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	

Analyzed by: 2805 Extraction date Extracted by: 09/26/22 10:21:13 1.0101a

Analysis Method: SOP.T.40.043 Analytical Batch : KN002934MIC Instrument Used : Micro E-HEW-069 Running on : N/A

Dilution: N/A Reagent : N/A Consumables: N/A Pipette: N/A

Reviewed On: 09/26/22 20:18:08 Batch Date: 09/23/22 08:57:01

Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
AFLATOXIN B2		0.002	ppm	ND	PASS	0.02
AFLATOXIN B1		0.002	ppm ppm	ND ND	PASS	0.02
OCHRATOXIN A-	11/1/1/1	0.002				0.02
TOTAL MYCOTO	XINS	0.002	ppm	ND	PASS	0.02
Analyzed by: 2803	Weight: 0.5055g	Extraction d N/A	ate:	Ext N/A	racted by	

Analysis Method: SOP.T.30.060, SOP.T.40.060 Analytical Batch: KN002956MYC

Instrument Used: E-SHI-125 Mycotoxins Running on : N/A

Dilution: 0.01 Reagent: N/A Consumables : N/A Pipette: N/A

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.060 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMSMS, LOQ 5.0 ppb). *Based on FL action limits.

Heavy Metals

PASSED

Reviewed On: 09/27/22 15:46:25

Batch Date: 09/27/22 15:35:33

Reviewed On: 09/29/22 09:45:58

Batch Date: 09/27/22 09:27:49

Metal		LOD	Units	Result	Pass / Fail	Action Level
ARSENIC-AS		0.02	ppm	ND	PASS	1.5
CADMIUM-CD		0.02	ppm	ND	PASS	0.5
MERCURY-HG		0.02	ppm	ND	PASS	3
LEAD-PB		0.02	ppm	ND	PASS	0.5
Analyzed by: 2368, 138, 12	Weight: 0.2662g	Extractio N/A	n date:	Ex N	tracted b	y:

Analysis Method: SOP.T.40.050, SOP.T.30.052
Analytical Batch: KN002952HEA

Instrument Used: Metals ICP/MS

Running on : N/A Dilution: 50

Reagent : N/A Consumables : N/A Pipette: N/A

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screening is periormed using ICP-MS (Inductively Coupled Plasma – Mass Spectrometer) which can screen down to single digit pob concentrations for regulated heavy metals using Method SOPT.30.082 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.082TN Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC—In-control QC parameter, NC—Non-controlled QC parameter, ND—Not Detected, NA—Not Analyzed, ppm=Parts Per Millon, pbp=Parts Per Millon, pbillon. Limit of Detection (LGD) and Limit Of Quantitation (LGQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

State License # n/a ISO Accreditation # 17025:2017 Signature

09/29/22

Kaycha Labs

Matrix : Derivative

PASSED

Page 6 of 6

Certificate of Analysis

163 Carts Lake Lane Lutz, FL, 33548, US Telephone: (786) 314-9092 Email: joe@cbddoghealth.com Harvest/Lot ID: 020122

Batch#:020172 Sampled: 09/07/22 Ordered: 09/07/22

Sample Size Received: 60 ml Total Batch Size : N/A Completed: 09/29/22 Expires: 09/29/23 Sample Method: SOP Client Method

Filth/Foreign Material

PASSED

Analyte Filth and Foreign Material LOD Units detect/g ND

Result PASS

Action Level

Weight: 0.6014q

Extraction date: 09/26/22 10:27:21 Extracted by: 2805

Analysis Method: SOP.T.30.074, SOP.T.40.074 Analytical Batch : KN002926FIL Instrument Used : E-AMS-138 Microscope

Reviewed On: 09/26/22 10:30:38 Batch Date: 09/21/22 13:30:20

Dilution: N/A Reagent: N/A Consumables: N/A Pipette: N/A

Running on : N/A

This includes but is not limited to hair, insects, feces, packaging contaminants, and manufacturing waste and by-products. A SW-2TL3 Stereo Microscope is use for inspection.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC—In-control QC parameter, NC—Non-controlled QC parameter, ND—Not Detected, NA—Not Analyzed, ppm=Parts Per Millon, pbp=Parts Per Millon, pbillon. Limit of Detection (LGD) and Limit Of Quantitation (LGQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure, RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

State License # n/a

09/29/22